Review Article

Retinoblastoma: Recognise the Disease early and save a child’s life

Swathi Kaliki

Abstract: Retinoblastoma is the most common malignant intraocular tumor of childhood, with an incidence of 1 in 16,000 to 18,000 live births. The most common symptoms of retinoblastoma are leukocoria and strabismus. The diagnosis of retinoblastoma is delayed in the developing countries when compared to that of developed countries. The management of retinoblastoma has dramatically changed over the years from previous radiotherapy methods to current chemotherapy strategies. The treatment of choice in less advanced cases is chemotherapy and in more advanced cases is enucleation. With the improved treatment strategies, patient survival, globe salvage, and vision salvage in patients with retinoblastoma has drastically improved over the years. The aim of this article is to discuss the presenting features, treatment strategies, and prognosis of retinoblastoma.

Key Words: Eye Tumor, Retinoblastoma, Radiotherapy, Chemotherapy, Enucleation

Introduction

Retinoblastoma is the most common malignant intraocular tumor of childhood. James Wardrop first described it as a clinical entity in 1809, and Verhoeff proposed the term retinoblastoma in 1922, which was adopted by the American Ophthalmological Society in 1926.1,2

Incidence of retinoblastoma

The incidence of retinoblastoma is 1 in 16,000 to 1 in 18,000 live births3,4. It represents 11% of cancers developing in the first year of life, and 3% of the cancers developing among children younger than 15 years5. It is estimated that, worldwide, 7202 to 8102 new cases are detected each year, of which 5819 to 6545 cases (81% cases) are from Africa and Asia6.

Pathogenesis of retinoblastoma

Retinoblastoma is a hereditary malignancy with approximately 40% cases having an inherited form of disease caused by heterozygous germline mutation in the RB gene (RB1). Knudson proposed the “two-hit hypothesis” to explain the pathogenesis of retinoblastoma.7 Ten percent of patients have familial retinoblastoma, who inherit RB1 mutation from a genetically affected parent. In such cases, every cell in the body of affected children contains a germline RB1 mutation (the first hit). Mutation of the remaining RB1 gene copy in a retinal cell (the second hit) causes retinoblastoma.8 In another 30% of children with sporadic hereditable retinoblastoma, the germline RB1 mutation occurs as a de novo genetic event and their parents are genetically normal7. The remaining 60% children have sporadic nonheritable retinoblastoma, in which the tumors occur due to two somatic RB1 mutations in a single retinal progenitor or precursor cell. Based on the hereditary and inheritance pattern, retinoblastoma is classified as somatic or germline, sporadic or familial, and nonheritable and heritable.

Signs and symptoms

Retinoblastoma is usually diagnosed between the ages of 3 months to 3 years, with 95% of cases diagnosed before the age of 5 years10,11. In rare instances, the tumor can be detected at birth or in adulthood. The tumor can be unilateral or bilateral. Overall, the mean age at presentation of retinoblastoma is 18 months. The mean age at presentation of unilateral cases is 24 months and for bilateral cases is 12 months10,11.

The most common presenting complaint in children with retinoblastoma is leukocoria or a white pupillary reflex (60% to 70% cases). The second most common complaint is strabismus (20% to 25% cases).11,12 The other less common presenting features include pseudohypopyon, hyphema, heterochromia iridis, unilateral mydriasis, red painful eye, proptosis, and orbital cellulitis (Figure 1). However, in contrast to the reports from the developed countries, the reports from some of the developing countries suggest proptosis as the most common presenting feature of retinoblastoma (55% to 85%), indicating a delayed diagnosis of the disease in the developing world13,14.
Retinoblastoma presents with a solid retinal tumor, with or without subretinal seeds and/or vitreous seeds. Solid retinal tumors begin as a small translucent thickening of the sensory retina, and gradually enlarge to an opaque yellowish-white lesion with intralesional vascularity and dense chalky white areas of calcification11. The lesions can be focal or multifocal. As the tumors enlarge, the tumor cells disseminate into the surrounding tissues with seeding of the tumor in the vitreous (vitreous seeds) and the subretinal space (subretinal seeds). Endophytic tumor growth pattern is associated with vitreous seeds and exophytic tumor growth pattern is associated with retinal detachment and subretinal seeds. Advanced cases can present with extension of the tumor into the anterior chamber (pseudohypopyon), along the optic nerve, and/or with extraocular tumor extension.

Ancillary tests

The most important tool in the diagnosis of retinoblastoma is indirect ophthalmoscopy. The other useful tests include ultrasonography, computed tomography, and magnetic resonance imaging. B-scan ultrasonography reveals a dome shaped or irregular intraocular mass. On A-scan ultrasonography, the noncalcified portion of the tumor demonstrates low to medium internal reflectivity, and the areas of calcium within the lesion exhibit high reflective echoes causing attenuation of the adjacent sclera and orbit15. Ultrasonography is also useful to measure the tumor thickness.

Computed tomography (CT) of the orbit helps in the detection of intraocular mass with intratumoral calcification, extension of tumor into optic nerve and extraocular tumor extension. CT orbit is more sensitive in the detection of intratumoral calcification, which is seen as bright hyperdense spots16. On magnetic resonance imaging (MRI) of the orbit, retinoblastoma is hyperintense to vitreous on T1, and hypointense on T2-weighted images16. MRI is more sensitive in the detection of choroidal and/or optic nerve tumor infiltration. CT and MRI brain are also useful in the detection of pinealoblastoma.

Classification and staging of retinoblastoma

Over the years, several classification systems have been used for retinoblastoma. Intraocular retinoblastoma has been classified using Reese-Ellsworth classification, Essen classification, Philadelphia classification, and International Classification of Retinoblastoma. The most commonly used classification for intraocular retinoblastoma is International Classification of Retinoblastoma (Figure 2), which includes five groups17,18.

- **Group A:** Small tumor ≤ 3 mm located outside the macula
- **Group B:** Larger tumor > 3 mm or any tumor with associated subretinal fluid or any tumor in the macula
- **Group C:** Tumor associated with focal subretinal and/or vitreous seeds
- **Group D:** Tumor associated with diffuse subretinal and/or vitreous seeds
- **Group E:** Massive tumor with neovascular glaucoma, opaque media due to intraocular hemorrhage, diffuse infiltrating tumor, aseptic orbital cellulitis, or phthisis bulbi.
For tumors with intraocular and extraocular involvement, the described classifications include Grabowski-Abramson classification, St Jude classification, International Retinoblastoma Staging System, and the TNM (Tumor, node, metastasis) classification.

The most commonly used classification for extraocular retinoblastoma is International Retinoblastoma Staging System, which includes four stages:

Stage 0: Intraocular retinoblastoma, eye not enucleated
Stage I: Eye enucleated, no residual tumor
Stage II: Eye enucleated, microscopic residual tumor
Stage III: Local/regional disease
 a: Overt orbital disease
 b: Local/regional lymph node involvement
Stage IV: Metastatic disease
 a: Hematogenous metastasis (without central nervous system (CNS) involvement)
 1. Single lesion
 2. Multiple lesions
 b: Central nervous system involvement
 1. Prechiasmatic lesion
 2. CNS mass
 3. Leptomeningeal and cerebrospinal fluid disease

Treatment of retinoblastoma

The treatment of retinoblastoma depends on the tumor laterality and the tumor grouping/staging. The various forms of treatment for retinoblastoma include:

Local treatment: Laser photocoagulation
 Transpupillary thermotherapy
 Cryotherapy
Chemotherapy: Periocular chemotherapy
 Intravitreal chemotherapy
 Intraarterial chemotherapy
 Systemic chemotherapy
Radiation treatment: Plaque radiotherapy
 External beam radiotherapy
 Proton beam radiotherapy
Surgical treatment: Enucleation
 Orbital exenteration

Laser photocoagulation

Xenon, Argon, and YAG lasers have been used for laser photocoagulation. Laser photocoagulation can be used for a small tumor < 3 mm in basal diameter and < 2 mm in thickness. The spot size is 200-300 um and the power is 100 to 400 mw. Laser burns are applied around the tumor in a double row fashion. The end point of laser photocoagulation is a grey-white burn. Two to three sessions at 4-week intervals are required to attain tumor resolution.
control. The aim of this therapy is to occlude the blood supply to the tumor, to cause tumor regression. Laser photocoagulation should be avoided during systemic/intrarterial chemotherapy as it decreases the drug delivery to the tumor. With the advent of transpupillary thermotherapy with diode laser, argon laser photocoagulation is less commonly used.

Transpupillary thermotherapy

Transpupillary thermotherapy (TTT) can be used as primary treatment for small tumors (< 3 mm in basal diameter and < 2 mm in thickness) or as consolidation treatment during systemic chemotherapy. 810 nm diode laser is used to achieve hyperthermia and allow tumor destruction. The diode laser can be delivered to the tumor through a microscope adaptor or an indirect ophthalmoscope. When used with indirect ophthalmoscope, the spot size is 1.2 mm and the power is 300 to 800 mw. The laser burns are applied over the tumor. The end point of TTT is a grey-white burn. The preferred duration of treatment during each session is 5 to 7 minutes. Two to three sessions at 4 to 6-week intervals are required to attain tumor control, when used as primary treatment. When combined with systemic chemotherapy (Chemothermotherapy), TTT is performed after 1 to 2 hours of administration of systemic chemotherapy. A mean of 3 to 4 sessions are required to achieve adequate tumor control.

Cryotherapy

Cryotherapy is used to treat small tumors (< 3 mm in basal diameter and < 2 mm in thickness) in the pre-equatorial region. Triple freeze-thaw cryotherapy is advocated in the management of retinoblastoma. Single or triple freeze-thaw cryotherapy at 1 or 2 locations administered 24 hours prior to systemic chemotherapy increases the permeability of carboplatin into the vitreous by 15-folds and thus allows better tumor control.

Periocular chemotherapy

Periocular administration of chemotherapy allows delivery of higher concentrations of chemotherapy drugs to the posterior segments of the eye. Periocular chemotherapy is used as an adjunct treatment for eyes with persistent vitreous seeding despite other forms of treatment, in patients with bilateral retinoblastoma with poor prognosis at diagnosis, or in those in whom systemic chemotherapy is contraindicated. The most commonly used drug is carboplatin at a dose of 20mg/2cc. The administration of periocular carboplatin results in higher vitreous concentration of carboplatin by 8 to 10-fold when compared to intravenous administration.

Intravitreal chemotherapy

Intravitreal chemotherapy for retinoblastoma was first investigated in 1960’s. However, this technique did not gain popularity due to risk of tumor seeding after any intraocular intervention in retinoblastoma. Recently, intravitreal chemotherapy is being used in the treatment of residual/recurrent vitreous seeds. The most commonly used drug for intravitreal injection is melphalan at a dose of 20-30 ug. The drug is given via the pars plana route and is repeated every 7 to 10 days or every month.

Intraarterial chemotherapy

Intraarterial chemotherapy for retinoblastoma involves injection of chemotherapeutic agent directly into the ophthalmic artery, thus allowing targeted drug delivery into the eye. It can be used as primary or secondary treatment for retinoblastoma. The most commonly used drug for intraarterial chemotherapy is melphalan at a dose of 5mg/30 cc normal saline. The advantages of intraarterial chemotherapy include:

1. Control of intraocular tumor
2. Resolution of Retinal Detachment
3. Globe salvage
4. Minimal systemic side-effects

Systemic chemotherapy

Systemic intravenous chemotherapy is used for chemoreduction of intraocular tumors to facilitate globe and vision salvage, in orbital extention to control the malignancy prior to enucleation or exenteration, for chemoprophylaxis in eyes with high-risk retinoblastoma to prevent systemic metastasis, and for treatment of metastatic retinoblastoma. The most commonly used chemotherapeutic regimen to achieve chemoreduction is vincristine sulfate, etoposide phosphate and carboplatin (VEC) for 6 cycles every 3-4 weeks. The advantages of systemic chemotherapy include:

1. Control of intraocular tumor
2. Resolution of retinal detachment
3. Globe salvage
4. Vision salvage
5. Prevention of pinealoblastoma
6. Prevention of systemic metastasis in high-risk retinoblastoma, and
7. Reduction of long-term second non-ocular cancers.

Plaque radiotherapy

Plaque radiotherapy is used as primary treatment for unilateral solitary tumors and most commonly as secondary treatment for recurrent or residual tumors. The size of the episcleral plaque is planned such as to cover 2 mm margin beyond the tumor basal dimension all around the lesion. The tumor apex dose is 40 Gy with a 2 mm safety margin at the tumor apex. The advantages of plaque radiotherapy include:

1. Control of intraocular tumor
2. Resolution of retinal detachment
3. Globe salvage
4. Shorter duration of treatment
5. Minimal side-effects due to minimal exposure of normal tissue outside the radiation field
6. No risk of second malignancies due to radiation exposure

External beam radiotherapy

External beam radiotherapy (EBRT) was the most common modality of primary treatment for retinoblastoma in the pre-chemotherapy era. With the improved chemotherapeutic options, EBRT is rarely used as primary treatment. Currently, it is reserved for cases with poor response to systemic chemotherapy, eyes with extensive subretinal and/or vitreous seeds not responding to other forms of treatment, as an adjunct treatment in cases with extension of tumor to optic nerve transection or those with extraocular tumor extension. A total dose of 40 to 45 Gy is delivered to the eye in multiple fractions. Though satisfactory tumor control is achieved with EBRT, it is associated with significant adverse effects such as:

1. Dry eye
2. Radiation induced cataract
3. Radiation retinopathy and/or maculopathy
4. Radiation optic neuropathy
5. Orbital hypoplasia
6. Second malignancies due to radiation exposure in patients with germline mutation

The adverse effects are minimal with the newer modifications of EBRT including 3 dimensional conformal radiotherapy and intensity modulated radiation therapy.

Proton beam radiotherapy

Proton beam radiotherapy can also be used for the treatment of retinoblastoma. The indications of treatment are similar to external beam radiotherapy. Tumor control with proton beam radiotherapy is comparable to that achieved with EBRT, and is associated with lower incidence of radiation-induced side-effects.

Enucleation

Prior to the advent of radiotherapy and chemotherapy, enucleation was the most commonly used modality of treatment for intraocular retinoblastoma. Despite recent advances in the management of retinoblastoma, enucleation remains the treatment of choice in cases with advanced tumors. The indications of enucleation include group E tumors, tumors not responding to conservative treatment, and in those eyes with optic nerve and/or extraocular tumor extension after neoadjuvant chemotherapy. Adequate care should be taken during enucleation to avoid perforation of the globe and obtain a long segment of optic nerve.

Following enucleation, the histopathologic features are determined. The high-risk histopathologic features predictive of systemic metastasis include:

1. Anterior chamber seeding
2. Iris infiltration
3. Ciliary body infiltration
4. Massive choroidal infiltration (≥ 3 mm in largest dimension)
5. Combined choroidal and optic nerve involvement
6. Retrolaminar optic nerve involvement
7. Involvement of optic nerve transection
8. Scleral involvement
9. Extrascleral involvement

The patients with high-risk retinoblastoma are treated with 6 cycles of adjuvant systemic chemotherapy at 3-week intervals. In cases with involvement of optic nerve transection, full thickness sclera, and extraocular tissue, additional EBRT is recommended.

Orbital exenteration

Orbital exenteration for retinoblastoma is indicated in those cases with orbital tumor extension. With the advent of systemic chemotherapy, primary orbital exenteration is rarely required. The cases with orbital tumor extension become amenable to enucleation with neoadjuvant
systemic chemotherapy, and exenteration is performed in those cases with persistent extraocular tumor despite systemic chemotherapy.

Prognosis

It is estimated that, worldwide, 3001 to 3376 patients die every year, due to retinoblastoma, of which 2845 to 3201 patients (95% cases) are from Africa and Asia. While the mortality rate due to retinoblastoma is 3 to 5% in developed countries, it is 70% in Africa, and 39% in Asia. With early diagnosis and appropriate treatment, the survival rates of children with retinoblastoma can be improved.

References

Support provided by Hyderabad Eye Research Foundation, Hyderabad.

The funders had no role in the preparation, review or approval of the manuscript.